Motion planning and bimanual coordination in humanoid robots
نویسندگان
چکیده
Humanoid robots have a large number of “extra” joints, organized in a humanlike fashion with several kinematic chains. In this chapter we describe a method of motion planning that is based on an artificial potential field approach (Passive Motion Paradigm) combined with terminal-attractor dynamics. No matrix inversion is necessary and the computational mechanism does not crash near kinematic singularities or when the robot is asked to achieve a final pose that is outside its intrinsic workspace: what happens, in this case, is the gentle degradation of performance that characterizes humans in the same situations. Moreover, the remaining error at equilibrium is a valuable information for triggering a reasoning process and the search of an alternative plan. The terminal attractor dynamics implicitly endows the generated trajectory with human-like smoothness and this computational framework is characterized by a feature that is crucial for complex motion patterns in humanoid robots, such as bimanual coordination or interference avoidance: precise control of the reaching time.
منابع مشابه
A Low Friction Demanding Approach in Gait Planning for Humanoid Robots During 3D Manoeuvres
This paper proposes a gait planning approach to reduce the required friction for a biped robot walking on various surfaces. To this end, a humanoid robot with 18 DOF is considered to develop a dynamics model for studying various 3D manoeuvres. Then, feasible trajectories are developed to alleviate the fluctuations on the upper body to resemble human-like walking. In order to generate feasible w...
متن کاملA biomimetic, force-field based computational model for motion planning and bimanual coordination in humanoid robots
This paper addresses the problem of planning the movement of highly redundant humanoid robots based on non-linear attractor dynamics, where the attractor landscape is obtained by combining multiple force fields in different reference systems. The computational process of relaxation in the attractor landscape is similar to coordinating the movements of a puppet by means of attached strings, the ...
متن کاملPSO-Based Path Planning Algorithm for Humanoid Robots Considering Safety
In this paper we introduce an improvement in the path planning algorithm for the humanoid soccer playing robot which uses Ferguson splines and PSO (Particle Swarm Optimization). The objective of the algorithm is to find a path through other playing robots to the ball, which should be as short as possible and also safe enough. Ferguson splines create preliminary paths using random generated para...
متن کاملThe Challenge of Motion Planning for Soccer Playing Humanoid Robots
Motion planning for humanoids faces several challenging issues: high dimensionality of the configuration space, necessity to address balance constraints in single and double support mode, higher levels of planning for coordination of different skills, etc. While the above challenges hold for any humanoid robot, the soccer scenario adds difficulties rarely addressed in humanoid motion planning r...
متن کاملMotion Planning for Humanoid Robots Using Timed Petri Net and Modular State Net
In this paper, we propose a supervisory control system for motion planning of humanoid robots. The proposed system is hierarchically structured into two levels. The lower level controls and monitors the robots using modular state nets. The upper level generates an optimal sequence of motion for user’s requirements using timed Petri nets. Keywords— humanoid robot, modular state net, timed Petri ...
متن کامل